

Risposta in frequenza dei sistemi LTI

Se il segnale d'ingresso di un sistema Lineare Tempo-Invariante (LTI) e' un <u>esponenziale complesso</u> l'uscita sara' ancora un <u>esponenziale complesso con la stessa frequenza, ma con ampiezza e fase modificate</u>.

$$A\exp\{j(2\pi f_o t + \vartheta)\}$$

$$B\exp\{j(2\pi f_o t + \varphi)\}$$

Risposta in frequenza:

E' la funzione della frequenza che descrive come vengono modificate ampiezza e fase di un esponenziale complesso quando passa attraverso un sistema LTI.

Risposta in frequenza dei sistemi LTI (2)

$$x(t) = \exp\{j2\pi ft\}$$

Sistema LTI

$$y(t) = \exp\{j2\pi \ ft\} \cdot H(f)$$

$$\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d\tau$$

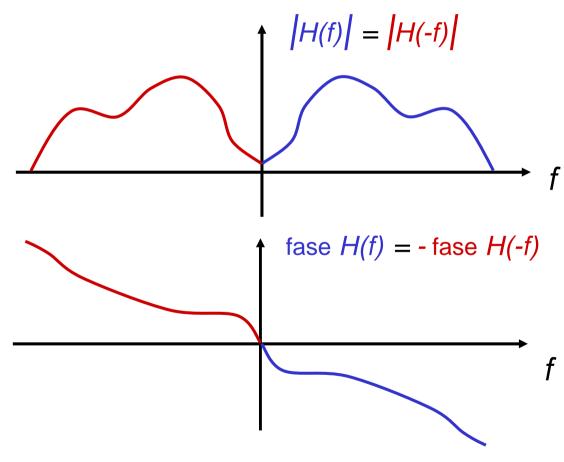
$$y(t) = \int_{-\infty}^{\infty} \exp\{j2\pi \ f(t-\tau)\} \ h(\tau) \ d\tau = \exp\{j2\pi \ ft\} \int_{-\infty}^{\infty} h(\tau) \ \exp\{-j2\pi \ f\tau\} \ d\tau = \exp\{j2\pi \ ft\} \left[H(f) \right]$$

L'uscita di un sistema LTI alimentato da un ingresso esponenziale complesso e' ancora un esponenziale complesso con la stessa frequenza dell'ingresso.

L'ampiezza e la fase iniziale dell'uscita dipendono dalla risposta in frequenza H(f) del sistema LTI.

Risposta in frequenza di sistemi reali

Se il sistema LTI ha risposta all'impulso h(t) reale, la risposta in frequenza H(f) e' una funzione con simmetria complessa coniugata: $H(f) = H^*(-f)$ (come si verifica facilmente dalla definizione di H(f)). Dunque il modulo di H(f) e' pari (simmetrico rispetto all'origine) e la fase di H(f) e' dispari (antisimmetrica rispetto all'origine).



Risposta in frequenza di sistemi reali (2)

$$x(t) = \cos(2\pi f_0 t) = \frac{1}{2} \left[\exp\{j2\pi f_0 t\} + \exp\{-j2\pi f_0 t\} \right]$$

$$y(t) = x(t) * h(t) = \frac{1}{2} \left[\exp\{j2\pi f_0 t\} H(f_0) + \exp\{-j2\pi f_0 t\} H(-f_0) \right] =$$

$$= \frac{1}{2} \left[\exp\{j2\pi f_0 t\} H(f_0) + \exp\{-j2\pi f_0 t\} H^*(f_0) \right] =$$

$$= \frac{1}{2} |H(f_0)| \cdot \left[\exp\{j(2\pi f_0 t + \varphi)\} + \exp\{-j(2\pi f_0 t + \varphi)\} \right] =$$

$$= |H(f_0)| \cdot \cos(2\pi f_0 t + \varphi)$$

$$\varphi = fase H(f_0)$$

Risposta in frequenza e banda passante

La risposta in frequenza H(f) e' una funzione <u>complessa</u> della frequenza che dipende solo dalla risposta all'impulso del sistema h(t).

$$H(f) = \int_{-\infty}^{\infty} h(t) \exp\{-j2\pi ft\} dt$$

La risposta in frequenza H(f) consente d'introdurre il concetto di **banda passante** di un sistema LTI (tipicamente un canale di trasmissione).

Il modulo della risposta in frequenza avra' valori piu' elevati in una banda di frequenze (detta banda passante) e relativamente piu' bassi alle altre frequenze.

All'uscita del sistema LTI, gli esponenziali complessi con frequenza compresa nella banda passante del sistema avranno ampiezza molto maggiore di quelli con frequenza esterna a tale banda. Si usa dire che i primi "passano" attraverso il sistema, mentre i secondi no.

Trasformata di Fourier

L'operatore che consente di ottenere la risposta in frequenza H(f) a partire dalla risposta all'impulso del sistema h(t), viene detto trasformata di Fourier.

La trasformata di Fourier puo' essere calcolata per <u>un generico segnale</u> x(t), non solo per la risposta all'impulso di un sistema LTI:

$$X(f) = \int_{-\infty}^{\infty} x(t) \exp\{-j2\pi ft\} dt$$

L'operatore che consente di riottenere il segnale x(t) a partire dalla sua trasformata di Fourier X(t) viene detto trasformata inversa di Fourier:

$$x(t) = \int_{-\infty}^{\infty} X(f) \exp\{j2\pi ft\} df$$

Si noti che la trasformata di Fourier e la sua inversa sono uguali, a parte il segno dell'esponente.

Segnali come somma di esponenziali complessi

La trasformata Inversa di Fourier

$$x(t) = \int_{-\infty}^{\infty} X(f) \exp\{j2\pi ft\} df$$

ha la seguente interpretazione:

un qualsiasi segnale x(t) puo' essere scomposto nella somma (integrale) di esponenziali complessi le cui ampiezze (infinitesime) e fasi iniziali in funzione della frequenza sono date dalla trasformata di Fourier X(t):

Ampiezza:
$$|X(f)| df$$
 Fase iniziale: $\angle X(f)$

Sistemi LTI: legame ingresso-uscita in frequenza

- 1 Se l'ingresso e' un esponenziale complesso $x(t) = A \exp\{j 2\pi \ f \ t\}$, l'uscita e' $y(t) = H(f) A \exp\{j 2\pi \ f \ t\}$
- 2 Un generico segnale x(t) puo' essere scomposto nella somma (integrale) di esponenziali complessi (di ampiezza infinitesima) del tipo X(t) exp{ $j \ 2\pi \ f \ t \ df$
- 3 L'uscita y(t) di un sistema LTI per un generico segnale d'ingresso x(t) e' data dalla somma (integrale) di esponenziali complessi H(t) X(t) E(t) E(
- 4 L'uscita y(t), come tutti i segnali, puo' essere scomposta nella somma di esponenziali complessi del tipo Y(f) exp{ j 2π f t } df

Quindi:

$$Y(f) = H(f)X(f)$$

Questo risultato corrisponde ad una importante proprieta' della trasformata di Fourier, che verra' ripresa nel seguito: la trasformata della convoluzione (y(t) = h(t) * x(t)) e' il prodotto delle trasformate (Y(f) = H(f)X(f)).

Esercizi sui sistemi LTI

1. La sinusoide $x(t) = \sin(2t/T)$ è l'ingresso di un sistema LTI con risposta in frequenza: $H(f) = \frac{1}{1 + i2\pi fT + (i2\pi fT)^2}$

Si determini l'uscita. Si calcolino valor medio e potenza di ingresso e di uscita.

2. Un sistema LTI con risposta all'impulso $h(t) = \begin{cases} 1 - t/T & 0 \le t \le T, \\ 0 & altrove \end{cases}$

riceve in ingresso un segnale a scalino x(t) = Au(t). Si calcoli l'uscita. Si calcolino energia, potenza e valor medio, di ingresso e uscita.

- 3. Un sistema LTI con ingresso $A\sin(2\pi f_0 t)$ ha come uscita $2\pi A f_0 \cos(2\pi f_0 t)$ per ogni valore di frequenza f_0 . Qual'é la risposta in frequenza del sistema?
- 4. Un sistema LTI ha risposta in frequenza H(f) e ingresso x(t) pari a:

$$H(f) = \frac{1}{(1+j2\pi fT)^6} \qquad x(t) = \cos\left(\frac{t}{T}\right)$$

calcolare l'uscita y(t) la sua potenza media, e la potenza media di x(t).