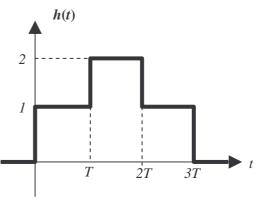

Corso di Fondamenti di Segnali e Trasmissione

Allievi Ingegneri Informatici - sede di Cremona - a.a. 2007/08


I appello – 7 Luglio 2008

Si consideri il filtro con la risposta all'impulso h(t) tracciata in figura:

b) Determinare la risposta in frequenza H(f) del filtro, scrivere le espressioni e tracciarne i grafici di modulo e fase nel range (-2/T, 2/T).

c) Determinare l'uscita y(t) del filtro, e la sua potenza P_y , quando l'ingresso x(t) vale:

1)
$$x(t) = A$$

$$2) \ x(t) = A\cos\left(\frac{3\pi t}{T}\right)$$

3)
$$x(t) = A rect\left(\frac{t}{2T}\right)$$

Esercizio 2

Si vuole stabilire un collegamento tramite ponte radio per un flusso di dati tra due punti situati a 20 km di distanza. Alla frequenza scelta $f_0 = 2.4$ GHz, è disponibile una banda utilizzabile senza licenza di 20 MHz. Per mantenere bassa la complessità del sistema si vuole usare una semplice modulazione 4-QAM.

- a) Stabilire il massimo bit-rate che si può trasmettere con i vincoli dati.
- b) Assumendo come specifica R_b =10 Mbps scegliere le forme d'onda che si possono utilizzare.
- c) Calcolare l'attenuazione da spazio libero.
- **d**) Dimensionare il guadagno dell'antenna al ricevitore in modo che la probabilità d'errore sia $P_b=10^{-12}$, sapendo anche che:
 - la potenza trasmessa è pari a 10 W
 - la densità spettrale di potenza del rumore è pari a $N_0/2 = 5 \cdot 10^{-16} \text{ W/Hz}$
 - il guadagno dell'antenna trasmittente non può essere maggiore di 30 dB.

(fac.) Come cambia il vincolo sull'antenna ricevente se si utilizza anche un codice BCH di parametri (N,K,d)=(127,92,11), lasciando invariate le altre condizioni?

Soluzioni

Esercizio 1

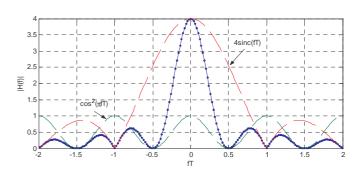
a) causale, E = 6T

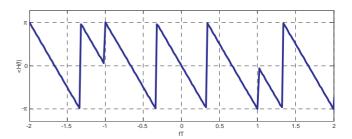
b)
$$H(f) = T \operatorname{sinc}(fT)(e^{-j\pi jT} + 2e^{-j3\pi jT} + e^{e^{-j5\pi jT}}) = 4T \operatorname{sinc}(fT)\cos^2(\pi jT)\exp(-j3\pi jT)$$

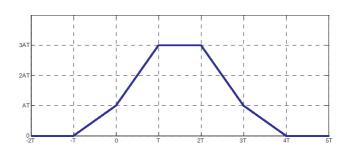
$$|H(f)| = 4T |\operatorname{sinc}(fT)| \cos^2(\pi fT),$$

 $|H(f)| = |\operatorname{sinc}(fT)| - 3\pi fT$

c1)


$$H(0) = 4T$$
, $y(t) = 4AT$, $P_y = 16A^2T^2$


c2)
$$H\left(\frac{3}{2T}\right) = 0, \quad y(t) = 0, \quad P_{y} = 0$$


c3)

$$y(-T) = y(4T) = 0$$

 $y(0) = y(3T) = AT$
 $y(T) = y(2T) = 3AT$

$$P_{v} = 0$$

Esercizio 2

a) In banda passante con modulazione 4-QAM, $B = (1 + \alpha) \frac{R_b}{2} \implies R_b \le 33 Mbps$

b) radici di Nyquist con roll-off anche del 100%

c)
$$\lambda = \frac{c}{f_0} = 12.5 \text{ cm} \implies \gamma_{SL} = 10 \log_{10} \left(\frac{4\pi R}{\lambda}\right)^2 = 126 \text{ dB}$$

d)

$$P_b = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) = 10^{-12} \quad con \quad \frac{E_b}{N_0} \cong 14 \, dB \quad \Leftrightarrow \quad E_b \cong 25N_0 = 2.5 \cdot 10^{-14} \, J \quad \Leftrightarrow$$

 $P_r = E_b R_b = 2.5 \cdot 10^{-7} W = -36 \, dBm \quad \Leftrightarrow \quad G_r = P_r - G_t - P_t + \gamma_{SL} = -36 \, dBm - 30 - 40 \, dBm + 126 = 20 \, d$