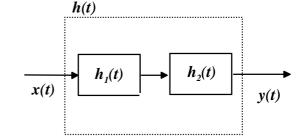
Corso di Fondamenti di Segnali e Trasmissione


Allievi Ingegneri Informatici - sede di Cremona

I appello – 20 luglio 2009

Esercizio 1

Un dispositivo LTI è costituito dalla cascata di due filtri LTI rappresentata in figura, con risposte all'impulso:

$$h_1(t) = -\frac{1}{T} rect\left(\frac{t-T/2}{T}\right), \quad h_2(t) = \frac{1}{T} rect\left(\frac{t-T}{2T}\right)$$

- a) Disegnare $h_1(t)$ e $h_2(t)$. Sono filtri causali?
- **b**) Determinare la risposta all'impulso complessiva h(t) e disegnarla. E'causale? Determinarne l'energia.
- c) Determinarne la risposta in frequenza H(f) del filtro complessivo. Tracciare approssimativamente il grafico del modulo di H(f).
- d) Sia $x(t) = 2 + \sin(2\pi t/T)$ all'ingresso del filtro h(t). Determinare l'uscita y(t) e calcolarne la potenza P_y .
- e) Sia $x(t) = -2\delta(t-T)$ all'ingresso del filtro h(t). Determinare l'uscita y(t), tracciarne l'andamento e calcolarne l'energia E_y .
- **f**) Sia n(t) un processo casuale gaussiano bianco con $S_N(f) = A$ all'ingresso del filtro h(t). Determinare le caratteristiche dell'uscita y(t) che è possibile prevedere, e calcolarne la potenza P_y .

Esercizio 2

In una memoria a semiconduttore, si memorizzano i bit usando due livelli antipodali di tensione. La lettura è disturbata da diversi fattori il cui effetto complessivo è assimilabile a quello di un rumore additivo gaussiano bianco la cui densità spettrale di potenza $N_0/2$ viene misurata. Le operazioni di lettura e scrittura sono quindi modellizzabili come operazioni di trasmissione e ricezione attraverso canale AWGN con modulazione 2PAM di forme d'onda g(t) di energia E_g e rapporto segnale rumore $E_g/N_0 = 9.5$ dB.

- a) Determinare la probabilità d'errore in lettura p per il singolo bit.
- **b)** Le specifiche del dispositivo richiedono una $P_b \le 10^{-12}$ e per raggiungere tale scopo si decide di memorizzare i bit dopo averli codificati tramite un BCH. Scegliere dalla tabella un codice adatto allo scopo, tenendo presente che in questa applicazione non ci sono vincoli di banda ma, più è basso il *rate* del codice, maggiore è il numero di bit di parità che occorre memorizzare togliendo spazio ai bit d'informazione.

Parametri dei principali codici BCH

N	K	d	t
15	11	3	1
	7	5	2
	5	7	3
31	26	3	1
	21	5	2
	16	7	3
	11	11	5

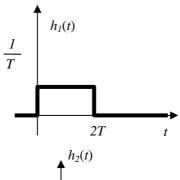
N	K	d	t
63	57	3	1
	51	5	2
	45	7	3
	45 39 36	9	4
	36	11	5

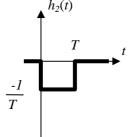
N	K	d	t
127	120	3	1
	113	5	2
	106	7	3
	99	9	4
	92	11	5

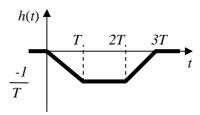
Soluzioni

Esercizio 1

a) Filtri causali


b)
$$h(t) = h_1(t) * h_2(t), E_h = 5/3T$$


c)
$$H(f) = H_1(f)H_2(f) = -2\operatorname{sinc}(fT)\operatorname{sinc}(2fT)e^{-j3\pi yT}$$


d)
$$H(0) = -2$$
, $H(1/T) = 0 \implies y(t) = -4$, $P_y = 16$

$$\mathbf{e}) \quad y(t) = -2h(t-T)$$

f) y processo gaussiano con $S_y(f) = A|H(f)|^2$, $P_y = \frac{5A}{3T}$

Esercizio 2

a)
$$p = Q\left(\sqrt{\frac{2E_s}{N_o}}\right)_{|_{\frac{E_s}{N} = 9.5dB}} \cong 10^{-5}$$

b) Conviene scegliere il massimo N a disposizione ed il massimo R che soddisfi la specifica. Con N=127 e

 $P_{\scriptscriptstyle b} = \frac{N^{\prime}}{(t+1)!} p^{\prime+1}$ occorre almeno t=3: con un BCH(127,106), $P_{\scriptscriptstyle b} \cong 4 \cdot 10^{-16}$ e circa il 20% della capacità va usata per i bit di parità.